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Resistance Development
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Source: Centers for Disease Control and Prevention
This chart shows the increase in rates of resistance for three bacteria that are of concern to public health officials:

Pssudomanas aeruginosa (FQRP). These data were collected from hospital intensive care units that participate in the
Mational Nosocomial Infections Surveillance System, a component of the CDC.



Approved Antibacterial Agents
1983-2004
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Source: Spellberg et al., Cinical infectious Diseases,
May 1, 2004 (moditfied)




Figure 3: Investment Escalation per Successful Compound

Investment required for one successful

drug launch (discovery through launch) Launch
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SOURCE: Windhover's In Vivo: The Business & Medicine Report,
Bain drug economics model, 2003

The figure shows one estimate of the total investment required to "launch”
(i.e., market) a successful drug in two time periods. Most of the recent cost
increases are within the "critical path” development phase, between discovery
and launch.




Pharmacokinetics
conc. vs time
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Pharmacokinetics
Problems:
 Protein Binding

e Tissue Distribution



Protein Binding of Cephalosporines
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Effect of Protein Binding on Antimicrobial Activity

MICs of Staphylococcus aureus (Data from Kunin et al. (1973))
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Tissue Concentrations

Tissue can be looked at as an agueous dispersed
system of biological material. It Is the concentration
In the water of the tissue that is responsible for
pharmacological activity.

Total tissue concentrations need to be interpreted
with great care since they reflect hybrid values of
total amount of drug (free + bound) in a given tissue

‘Tissue-partition-coefficients’ are not appropriate
since they imply homogenous tissue distribution



FDA Critical Path White Paper
2003 CDER Report to the Nation

We continue ... to extend our long-standing interest in the
application of dose-response principles by viewing drugs and

their actions directly at the level of the drug target, rather than
Indirectly via plasma concentrations
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The free (unbound) concentration of
the drug at the receptor site should be
used in PK/PD correlations to make
prediction for pharmacological activity



Blister Fluid

Blister fluid Is a
‘homogenous tissue fluid’

Protein binding in blister
fluid needs to be considered
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Microdialysis

e Microdialysis allows to monitor
the free tissue concentrations.

Perfusate
(Ringer’s)
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Microdialysis

Perfusate




No net flux method
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Pharmacokinetics




Iv dose of 10 mg/kg cefpodoxime (n=6)
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Summary
Animal Studies

e Free concentrations in muscle and lung are almost
iIdentical and much lower than the total plasma
concentrations.

e |t suggests that free concentrations measured In
human muscle maybe reasonable predictors for free
concentrations in human lung.



Clinical study
Cefpodoxime and Cefixime

 To compare the soft tissue distribution
of these two antibiotics after 400mg
oral dose In healthy male volunteers by
microdialysis

 TwWO way cross-over, single oral dose
study



Microdialysis




Clinical Microdialysis

Cefpodoxime
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Pharmacokinetics

Cefpodoxime Cefixime

AUCp [mg*h/L] 22.4 (8.7) 25.7 (8.4)
AUC; [mg*h/L]  15.4 (5.2) 7.4 (2.1)
Chmax. p [MQ/L] 3.9 (1.2) 3.4 (1.1)

Crnax 7 [MQ/L] 2.1 (1.0) 0.9 (0.3)



Azithromycin

Tissue Concentrations
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from Foulds et al. (1990)



Intracellular lon-Trapping by Lysosomes
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Azithromycin

Tissue concentration (IF) of azithromycin (50 mg/kg sc)
In infected (S. aureus) and uninfected rat thigh (same animal)
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hours AUC = 3,528 vs 4,398

_ _ P<0.01
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Scaglione et al. , ICAAC 2006




Phagocyte Delivery of Azithromycin

Phagocytes absorb azithromycin

in circulation and tissue ;

WBCs migrate to snes of

Bacteria

SR
T

Phagocytes release azithromycin
in response to bacteria A = azithromycin

from Schentag et al. (1991)



Conclusion

Microdialysis has opened the door to get better
iInformation about the drug concentrations at
the site of action.

This, in combination with appropriate PK/PD-
models, will allow for better dosing decisions
than traditional approaches based on blood
concentrations and MIC.



Ceftazidime

K. pneumoniae in neutropenic mice
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Temafloxacin

S. pneumoniae in neutropenic mice
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Pharmacodynamics

Problems:

e MIC is Imprecise
e MIC Is monodimensional

e MIC Is used as a threshold
 \When MIC does not explain the data,

patches are used
(post-antibiotic effect, sub-MIC effect)



MIC

The Current Paradigm

MIC is poison for the mind.

H. Mattie (1994), after a long after-dinner discussion



Kill Curves
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Kill Curves of Ceftriaxone
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Kill Curves of Ceftriaxone
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PK-PD Model

Maximum Growth Rate Constant k

Maximum Killing Rate Constant K-k

Initially, bacteria are in log growth phase



Single Dose
Piperacillin vs. E. coli




Dosing Interval
Piperacillin (2g and 4qg) vs. E. coli

50ug/mL g24h 50ug/mL g8h

50ug/mL g4h

100pg/mL g24h 100pg/mL q8h




Sigmoidal E, ..-Models
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Saturation in Growth
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Delay in the Onset of Growth
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Delay in the Onset of Kill
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Modified Sigmoidal E_ ..-Model
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Treyaprasert W, Schmidt S, Rand KH, et al.: Pharmacokinetic/pharmacodynamic
modeling of in vitro activity of azithromycin against four different bacterial strains.

Int J Antimicrob Agents 2007;29(3):263-70



Example 1

* Same PK » Different EC,,

* Same MIC (Sensitivity)

« Same t>MIC |

. Same AUC/MIC » Different K, ,,

. Same C__. /MIC (Maximum Kill Rate)
e Same k

(Growth Rate)



PK-PD modeling based on Kill Curves
Condition 1
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Modified E, ., Model:

Dose
ka

Bacteria




Two sub-population model

OBS: same growth rate for

Drug (C)

sensitive (S) and resistant (R)

-

Bacteria (S)

Bacteria (R)

\BacTer‘ia pool /




Model Comparison — P. aeruginosa

P. aeruginosa
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P. aeruginosa (MIC = 0.15 mg/L)
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Faropenem Daloxate

After oral administration, faropenem daloxate Is
rapidly absorbed and immediately converted In
plasma to its active moiety faropenem

Advantages of using the pro-drug instead of
faropenem sodium:
- higher oral bioavailability (70-80%)
- less gastrointestinal side effects
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Faropenem daloxate
300 mg g12h

Fed




Faropenem daloxate
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Ertapenem

—@— Muscle
—O— Subcutis
—w¥— Plasma

~~
-
~
(@)}
£
—
C
(@]
=
©
—
fra)
C
D
(&)
c
(@]
@)
=
(¢B)
C
[¢B)
(@1
©
]
—
L

6

Time (hours)

MIC,, values for Bacteroides fragilis (——), Streptococcus spp. (----), methicillin-susceptible
Staphylococcus aureus (----), and ESBL-producing Enterobacteriaceae (---). Burkhardt & Derendorf, JAC (2006)



Summary

* A simple comparison of serum concentration and MIC is
usually not sufficient to evaluate the PK/PD-
relationships af anti-infective agents.

e Protein binding and tissue distribution are important
pharmacokinetic parameters that need to be
considered. Microdialysis can provide information on
local exposure.

 PK-PD analysis based on MIC alone can be misleading.

« Microbiological kill curves provide more detailed
Information about the PK/PD-relationships than simple
MIC values.



Proposal

Wild Card Patent Extension

A company that receives approval for a new
antibiotic, or a new Iindication for an existing
antibiotic, that treats a targeted pathogen would be
permitted to extend the market exclusivity period for
another of the company’s FDA-approved drugs.
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