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Sometimes a Single Drug (Man) just 
cannot Achieve the Target Goals

Sisyphos
by Franz von Stuck, 1920

Most problematic infections:
1. Pre-existing resistant bacteria 

present in a high initial inoculum.

2. De novo formation of resistant 
mutants during long therapy or 
due to error prone replication.

3. Phenotypic tolerance of bacteria at 
the infection site (CSF, CF / mucus).

4. Sequestered infection sites.

5. Immuno-compromised patients.
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Best PK/PD index: T>MIC, AUC/MIC, Cmax/MIC
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Ambrose PG et al. CID 2007, 44:79-86.
Gumbo T et al. AAC 2007, 51:3781-8.
Louie A et al. AAC 2008, 52: 2486-96.

PK/PD indices for cell kill 
and for prevention of resistance 
differ within the same drug!
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Rapid killing and inoculum 
effect of colistin in vitro
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Inoculum effect of colistin vs. P. aeruginosa PAO1
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Structural model for colistin vs. P. aeruginosa

1st or 2nd-order process
Synthesis of signal molecules
Inhibitory effect

Intermediate 
population

“Resistant” 
population

k2S k2I k2R

Signal molecules

Susceptible 
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1st-order 
natural 

death kd

Inhibition
ImaxKill, IC50

kdeg

kd kd

t1/2,I t1/2,R

Synthesis

Growth half-life: t1/2,S

2nd-order 
killing by 
colistinSynthesis

Colistin in 
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Illustration from: 
Storm DR et al. 

Ann Rev Biochem 
1977.

Target site model

Bulitta JB et al. Antimicrob Agents Chemother, 2010 March. Funding : R01AI079330, NIAID.



Adaptive resistance to 
colistin and inter-conversion 

of sub-populations
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Translation to 1-compartment infection model: 
Colistin vs. P. aeruginosa ATCC 27853

Data:   Bergen PJ et al., ICAAC 2008, A-1671.    Modeling:  Bulitta JB et al., American Conf. on Pharmacometrics, 2009.

Colistin 
half-life 
set to 4h.

Funding : R01AI079330, NIAID.



Translation to 1-compartment infection model: 
Colistin vs. P. aeruginosa ATCC 27853

Data:   Bergen PJ et al., ICAAC 2008, A-1671.    Modeling:  Bulitta JB et al., American Conf. on Pharmacometrics, 2009.

Colistin 
half-life 
set to 4h.

Funding : R01AI079330, NIAID.

Therapia magna 
(sterilisans) by 
colistin

Paul Ehrlich (1854 - 1915)
Therapia magna sterilisans: 
Eradication therapy with ONE large dose.

Therapia fractionata sterilisans: 
Eradication therapy with fractionated doses.



Mechanism-based model 
for colistin vs. P. aeruginosa 
ATCC 27853 

Bulitta JB et al., American Conf. on Pharmacometrics, 2009.
Bergen PJ et al., ICAAC 2008, A-1671. 
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Sub-population dynamics model
with four sub-populations; formation of 
one intermediate sub-population is 
induced by colistin

Funding : R01AI079330, NIAID.
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Mathematical modeling methods
• Nonlinear mixed-effects modeling using the state-of-the-art 

Monte Carlo Parametric Expectation Maximization (MC-PEM) 
algorithm in S-ADAPT (version 1.56) parallelized on a computer 
cluster or pooled analysis in NONMEM VI.

• LSODA differential equation solver that can handle both 
stiff and non-stiff systems.

• Life-cycle model [1] to describe bacterial replication.

• All viable counts (including plates with no colonies) for each 
antibiotic alone and for the combination fitted simultaneously.

• Additive error on log-scale for CFU counts ≥100 CFU/mL. Low 
CFU counts were fit on linear scale as number of colonies per 
plate. Poisson error was included for these low colony counts.

1: Bulitta et al. Antimicrob Agents Chemother 2009, 53:46-56.
2: Bulitta & Yang et al. Antimicrob Agents Chemother 2010 Mar 8.



Parameter estimates from nonlinear mixed-effects 
modeling (S-ADAPT) and a pooled fit (NONMEM)

Bulitta JB et al., American Conf. on Pharmacometrics, 2009. Bergen PJ et al., ICAAC 2008, A-1671. 

Parameter Symbol Unit Estimate (%SE) 5-95% percentile  
from leave 20% out 

cross-validation    NONMEM S-ADAPT 

Log10 (Initial inoculum) Log10 CFUo  6.14 (3.9%) 6.16 (2.8%) 6.14 [6.12 - 6.16] 
Half-life of growth lag-time Ln(2) / klag

 min 31.5 (60%) 26.8 (13%) 31.7 [22.9 - 41.3] 
Mean generation time at low 
signal molecule conc. 

MTT12  
= k12

-1 
min 20.5 (12%) 23.5 (22%) 20.5 [17.0 - 25.5] 

Doubling rate constant  k21 h-1 50 (fixed) 50 (fixed) 50 (fixed) 
Maximum population size CFUmax CFU/mL 7.93 (0.9%) 7.99 (0.8%) 7.94 [7.90 - 7.99] 
 

Ratio of transfer rate constant (k12) from state 1 to state 2 relative to the susceptible pop. 
for less susceptible population frc12,L  0.237 (13%) 0.306 (32%) 0.242 [0.205 - 0.992] 
for resistant population frc12,R  1 (fixed) 1 (fixed) 1 (fixed) 

for inducible intermediate pop. frc12,I  1 (fixed) 1 (fixed) 1 (fixed) 

 

Second order killing rate constants relating colistin (base) concentrations  
at the target site to the rate of killing 

for susceptible population k2S L/(mg·h) 30.1 (12%) 27.8 (34%) 29.3 [26.4 - 43.8] 
for less susceptible population k2L L/(mg·h) 0.0689 (16%) 0.0591 (49%) 0.063 [0.033- 0.095] 
for resistant population k2R L/(mg·h) 0 (fixed) 0 (fixed) 0 (fixed) 
for inducible intermediate pop. k2I L/(mg·h) 1.03 (16%) 0.969 (63%) 1.04 [0.653 - 1.36] 
 

Log10 fraction of cells converting from one population to another during one growth cycle 
from population L to S Log10 FrLS  -2.78 (26%) -2.83 (29%) -2.83 [-8.73 to -0.46] 
from population R to L Log10 FrRL  -0.512 (10%) -0.551 (13%) -0.52 [-0.88 to -0.47] 
Log10 (FrSL / FrLS)   -6.58 (2.6%) -7.28 (9.0%) -6.60 [-7.27 to -6.06] 
Log10 (FrLR / FrRL)   -5.02 (23%) -5.00 (7.9%) -4.98 [-11.9 to -4.28] 
from population I to S Log10 FrIS  -0.493 (5.1%) -0.550 (26%) -0.49 [-0.57 to -0.44] 
Maximum fraction of cells 
converting from pop. S to I  

Log10 
SmaxSI 

 -0.364 (66%) -0.291 (63%) -0.364  
[-0.504 to -0.00364] 

Colistin (base) conc. causing 
with 50% of SmaxSI 

SC50,SI mg/L 50 (fixed) 50 (fixed) 50 (fixed) 

 

 Both 
estimation 
methods 
(programs) 
yielded 
consistent 
results.



WHAT ABOUT COMBINATION 
THERAPY AND PREVENTION 

OF RESISTANCE?

Sometimes, single agent therapy 
just can’t get the “job done”
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T>MIC, AUC/MIC, Cmax/MIC

How can these indices be applied 
to optimize drug combinations?

Case I:
Drug A: AUC/MIC
Drug B: AUC/MIC

Combination:
Sum of AUC/MIC? 

Case II:
Drug A: T>MIC
Drug B: AUC/MIC

Combination:
???

 Applying PK/PD indices to combination therapy is difficult.
 Many antibiotics bind to more than one receptor.
 Mechanistic knowledge about the relationship between receptor 

occupancy and bacterial responses (incl. resistance) is critical.

Quo vadis?

15
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Receptor 1 Receptor 2
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Unique Receptor Occupancy Patterns can be used 
to Rationally Optimize Combination Chemotherapy
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resistance 
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(upregulation)
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Sub-population synergy
Drug A kills the resistant sub-population 

of drug B & vice versa.

Killed by
Drug A

Susceptible to A

Resistant 
to A

Resistant 
to B

Susceptible to B

Drug B

>99% of cells 
susceptible to 
drug A and B

Drug A Drug B
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Example of sub-population synergy: Imipenem & colistin vs. P. aeruginosa
Bergen PJ et al., ICAAC 2009, poster A1-575.



Colistin and imipenem alone & in combination against 
Pseudomonas aeruginosa at two initial inocula
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Mechanism-based Synergy for 
Antibacterial Combinations

Susceptible 
sub-population 

for colistin

Growth

Killing by colistin

‘Resistant’  
sub-population 

for colistin

Funding : 
R01AI079330, NIAID.
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Killing by rifampicin 
alone not shown 
in the diagram.

Bulitta JB et al., Li J et al., ICAAC 2009, poster A1-574.
ICAAC 2009, poster A1-573.

Rifampicin

Enhance EC50,Rif = 
0.01 mg/L (fixed)
Emax = 244



Rifampicin Enhances Rate of Killing by Colistin
– time-kill studies

A: Colistin alone B: Rifampicin alone C: Combination
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Mechanistic synergy: Colistin increases the 
effective intracellular concentration of ciproflox. 

potentially via interference with efflux transporters

Funding : 
R01AI079330, NIAID. 21Bulitta JB et al., ECCMID 2009.
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Curve Fits: Colistin + ciprofloxacin 
vs. P. aeruginosa



Transition to man
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In vivo protein binding – a truly 
exciting story for colistin

24
Dudhani RV. et al. Antimicrob Agents 
Chemother 2010; 54: 1117-1124



PK of colistin (base) in mice

25Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124



PK/PD indices in 
neutropenic animals

26

Dudhani RV. et al. Antimicrob 
Agents Chemother 2010; 
54: 1117-1124



PK/PD parameter estimates in mice

27Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124



PK/PD index value for certain killing endpoints

28Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124



Population PK of colistin in CF-patients and in Cystic Fibrosis and 
Critically ILL patients

29Li J et al. JAC 2003; 52: 987-92. Plachouras D. et al. AAC 2009; 53: 3430-6.

CMS Colistin
CMS

Colistin
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Modeling the impact 
of the immune system

Hope WW, Drusano GL, 
et al. AAC 2007, 51:285-95.
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Conclusions
1. Colistin is a very promising component of our 

armamentarium against MDR gram-negatives.
2. The rapid killing and rapid emergence of resistance to 

colistin in vitro suggests administering a large initial 
dose of colistin and a short duration of therapy.

3. PK in special patient groups needs to be considered.
4. Synergy in cell kill and prevention of resistance of 

colistin with a variety of compounds in vitro warrants 
studies in vivo and in the hollow fiber system.

5. Rational development of combination regimens with 
colistin supported by mathematical modeling holds 
great promise.
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A Global Team Approach
Roger Nation’s and Jian Li’s 
Team in Melbourne, Australia

Team of Alan Forrest, 
Brian T. Tsuji (Buffalo, NY, USA) 
and Jurgen Bulitta (Albany, NY)

And a series of other collaborators, 
including our colleagues (David Z 
D’Argenio & Robert J Bauer, et al.) 
writing the mathematical software tools.

Funding: Colistin work 
supported by R01AI079330 
from NIAID, NIH.
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