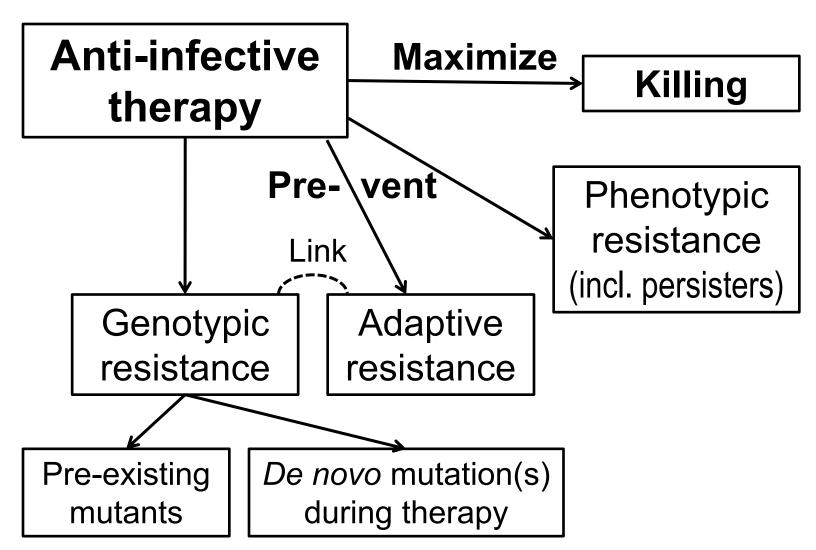
Combination therapy of *P. aeruginosa* with special reference to modeling of polymyxins *in vitro* and to preliminary animal models

April 20th, 2010

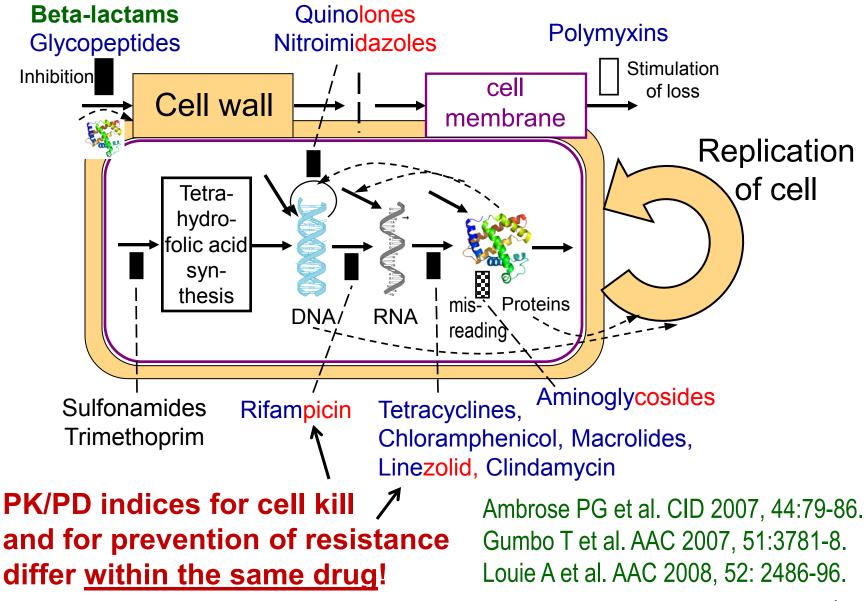

Jürgen B. Bulitta, PhD

Research Institute

Authors' Copyright © 2010. All rights reserved.

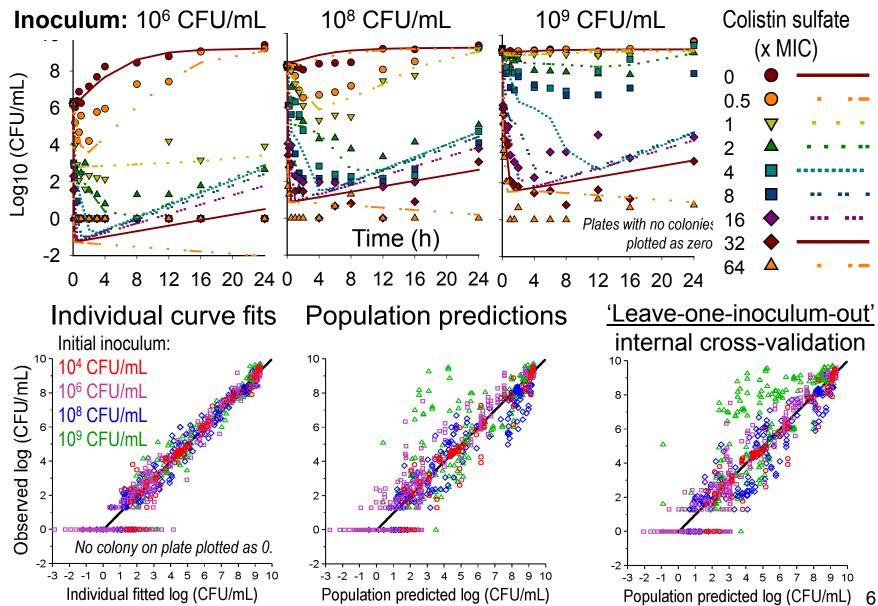
Target Goals

Sometimes a Single Drug (Man) just cannot Achieve the Target Goals


Most problematic infections:

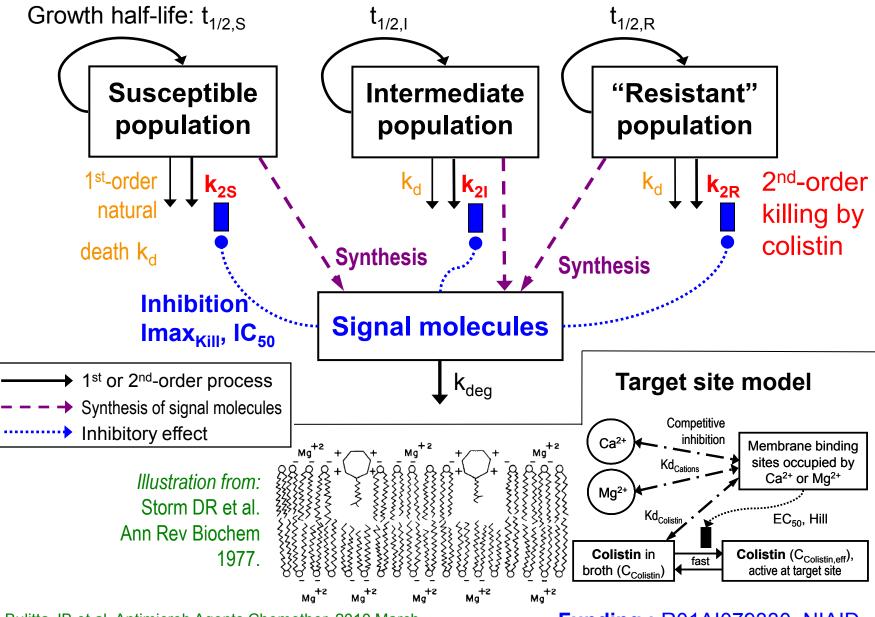
- 1. Pre-existing resistant bacteria present in a high initial inoculum.
- 2. De novo formation of resistant mutants during long therapy or due to error prone replication.
- 3. Phenotypic tolerance of bacteria at the infection site (CSF, CF / mucus).
- 4. Sequestered infection sites.
- 5. Immuno-compromised patients.

Sisyphos by Franz von Stuck, 1920


Best PK/PD index: T>MIC, AUC/MIC, C_{max}/MIC

Authors' Copyright © 2010. All rights reserved.

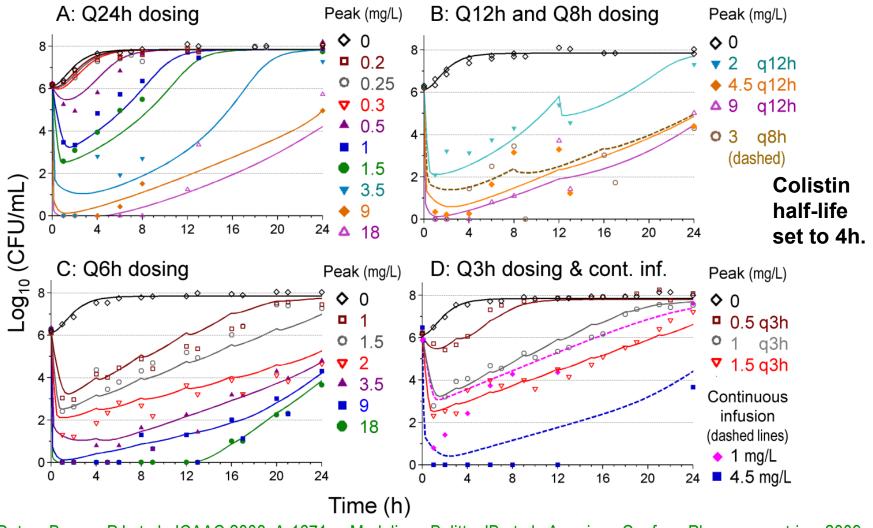
Rapid killing and inoculum effect of colistin *in vitro*


Inoculum effect of colistin vs. P. aeruginosa PAO1

Bulitta JB et al. Antimicrob Agents Chemother, 2010 March.

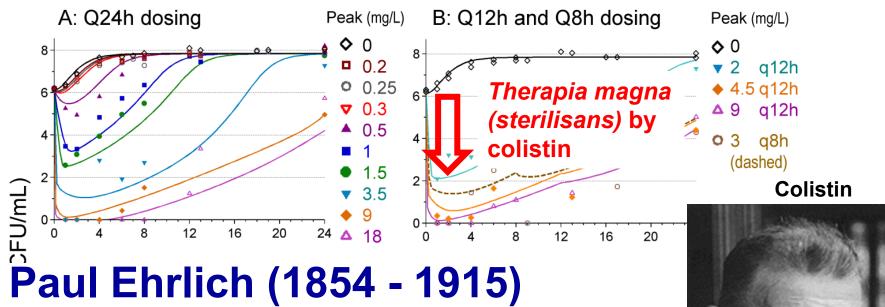
Funding : R01Al079330, NIAID.

Structural model for colistin vs. P. aeruginosa

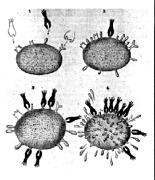


Bulitta JB et al. Antimicrob Agents Chemother, 2010 March.

Funding: R01AI079330, NIAID.

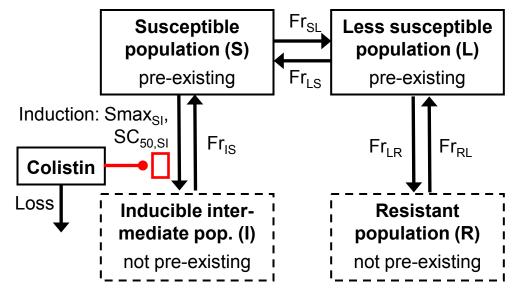

Adaptive resistance to colistin and inter-conversion of sub-populations

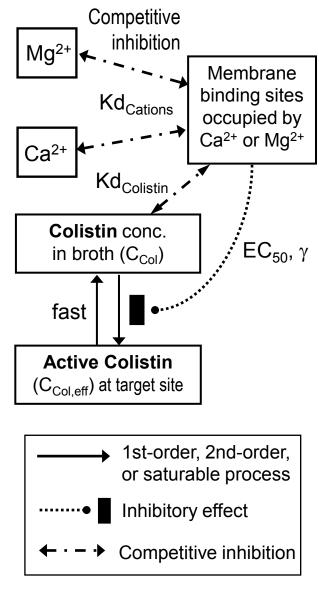
Translation to 1-compartment infection model: Colistin vs. *P. aeruginosa* ATCC 27853


Data: Bergen PJ et al., ICAAC 2008, A-1671. Modeling: Bulitta JB et al., American Conf. on Pharmacometrics, 2009. **Funding :** R01AI079330, NIAID.

Translation to 1-compartment infection model: Colistin vs. *P. aeruginosa* ATCC 27853

Therapia magna sterilisans: Eradication therapy with ONE large dose.


Therapia fractionata sterilisans: Eradication therapy with fractionated doses.



Mechanism-based model for colistin vs. *P. aeruginosa* ATCC 27853

Sub-population dynamics model with four sub-populations; formation of one intermediate sub-population is induced by colistin

Bulitta JB et al., American Conf. on Pharmacometrics, 2009. Bergen PJ et al., ICAAC 2008, A-1671. Target site model

Funding: R01AI079330, NIAID.

Mathematical modeling methods

- Nonlinear mixed-effects modeling using the state-of-the-art Monte Carlo Parametric Expectation Maximization (MC-PEM) algorithm in S-ADAPT (version 1.56) parallelized on a computer cluster or pooled analysis in NONMEM VI.
- LSODA differential equation solver that can handle both stiff and non-stiff systems.
- Life-cycle model [1] to describe bacterial replication.
- All viable counts (including plates with no colonies) for each antibiotic alone and for the combination fitted simultaneously.
- Additive error on log-scale for CFU counts ≥100 CFU/mL. Low CFU counts were fit on linear scale as number of colonies per plate. Poisson error was included for these low colony counts.

1: Bulitta et al. Antimicrob Agents Chemother 2009, 53:46-56.

2: Bulitta & Yang et al. Antimicrob Agents Chemother 2010 Mar 8.

Parameter estimates from nonlinear mixed-effects modeling (S-ADAPT) and a pooled fit (NONMEM)

Parameter	Symbol	Unit	Estimat	e (%SE)	5-95% percentile	
			NONMEM	S-ADAPT	from leave 20% out cross-validation	
Log ₁₀ (Initial inoculum)	Log ₁₀ CFUo		6.14 (3.9%)	6.16 (2.8%)	6.14 [6.12 - 6.16]	
Half-life of growth lag-time	Ln(2) / k _{lag}	min	31.5 (60%)	26.8 (13%)	31.7 [22.9 - 41.3]	
Mean generation time at low signal molecule conc.	MTT ₁₂ = k ₁₂ ⁻¹	min	20.5 (12%)	23.5 (22%)	20.5 [17.0 - 25.5]	
Doubling rate constant	k ₂₁	h⁻¹	50 (fixed)	50 (fixed)	50 (fixed)	
Maximum population size	CFU _{max}	CFU/mL	7.93 (0.9%)	7.99 (0.8%)	7.94 [7.90 - 7.99]	→ Both
Ratio of transfer rate constant	t (k ₁₂) from stat	e 1 to stat	e 2 relative to th	e susceptible p	op.	
for less susceptible population	frc _{12,L}		0.237 (13%)	0.306 (32%)	0.242 [0.205 - 0.992]	estimation
for resistant population	frc _{12,R}		1 (fixed)	1 (fixed)	1 (fixed)	mothe de
for inducible intermediate pop.	frc _{12,I}		1 (fixed)	1 (fixed)	1 (fixed)	methods
Second order killing rate cons at the target site to the rate of	(programs)					
for susceptible population	k _{2S}	L/(mg∙h)	30.1 (12%)	27.8 (34%)	29.3 [26.4 - 43.8]	yielded
for less susceptible population	k _{2L}	L/(mg∙h)	0.0689 (16%)	0.0591 (49%)	0.063 [0.033- 0.095]	
for resistant population	k _{2R}	L/(mg∙h)	0 (fixed)	0 (fixed)	0 (fixed)	consistent
for inducible intermediate pop.	k ₂₁	L/(mg∙h)	1.03 (16%)	0.969 (63%)	1.04 [0.653 - 1.36]	results.
Log ₁₀ fraction of cells convert	ing from one p	opulation	to another durin	ng one growth c	ycle	
from population L to S	$Log_{10} Fr_{LS}$		-2.78 (26%)	-2.83 (29%)	-2.83 [-8.73 to -0.46]	
from population R to L	$Log_{10} Fr_{RL}$		-0.512 (10%)	-0.551 (13%)	-0.52 [-0.88 to -0.47]	
Log ₁₀ (Fr _{SL} / Fr _{LS})			-6.58 (2.6%)	-7.28 (9.0%)	-6.60 [-7.27 to -6.06]	
Log ₁₀ (Fr _{LR} / Fr _{RL})			-5.02 (23%)	-5.00 (7.9%)	-4.98 [-11.9 to -4.28]	
from population I to S	$Log_{10} Fr_{IS}$		-0.493 (5.1%)	-0.550 (26%)	-0.49 [-0.57 to -0.44]	
Maximum fraction of cells converting from pop. S to I	Log ₁₀ Smax _{SI}		-0.364 (66%)	-0.291 (63%)	-0.364 [-0.504 to -0.00364]	
Colistin (base) conc. causing with 50% of Smax _{SI}	SC _{50,SI}	mg/L	50 (fixed)	50 (fixed)	50 (fixed)	

Bulitta JB et al., American Conf. on Pharmacometrics, 2009.

Bergen PJ et al., ICAAC 2008, A-1671.

Sometimes, single agent therapy just can't get the "job done"

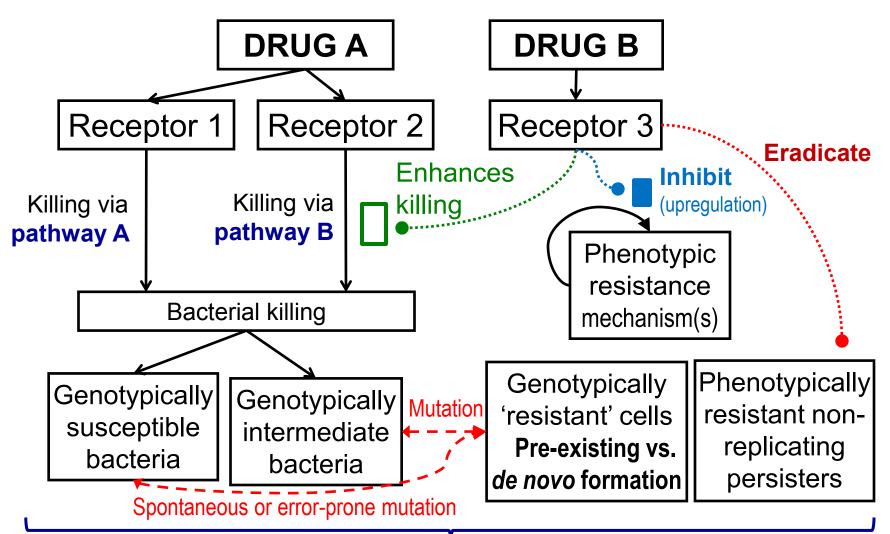
WHAT ABOUT COMBINATION THERAPY AND PREVENTION OF RESISTANCE?

T>MIC, AUC/MIC, C_{max}/MIC

How can these indices be applied to optimize drug combinations?

Case I: Drug A: AUC/MIC Drug B: AUC/MIC

Combination: Sum of AUC/MIC?



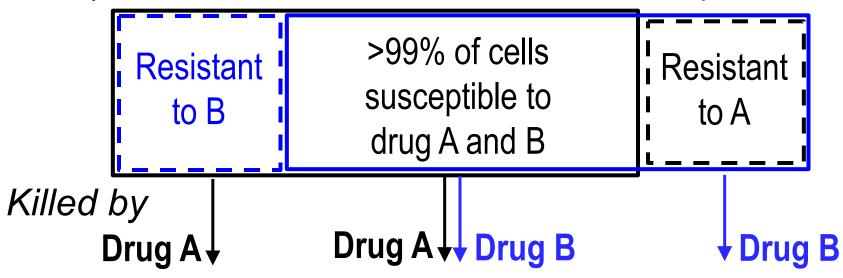
Case II: Drug A: T>MIC Drug B: AUC/MIC

Combination: ???

- → Applying PK/PD indices to combination therapy is difficult.
- \rightarrow Many antibiotics bind to more than one receptor.
- → Mechanistic knowledge about the relationship between receptor occupancy and bacterial responses (incl. resistance) is critical.

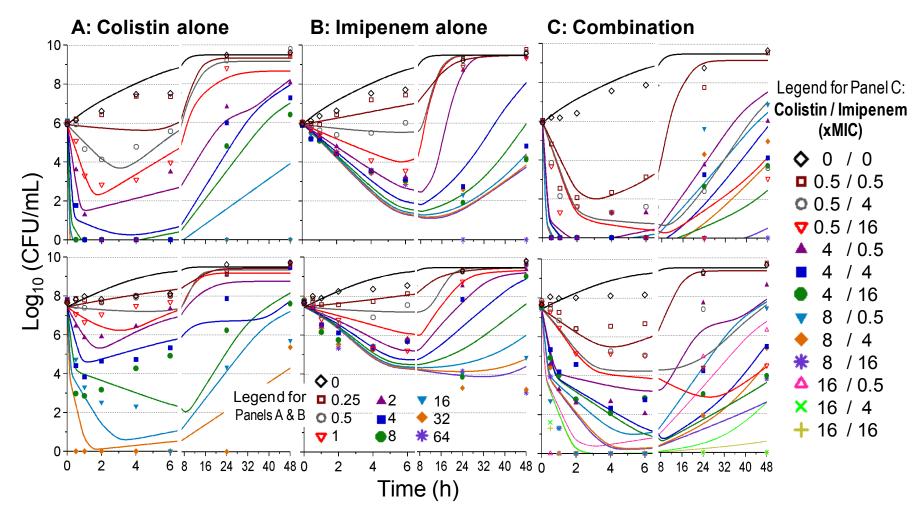
Unique Receptor Occupancy Patterns can be used to Rationally Optimize Combination Chemotherapy

Mechanism-based modeling integrates time course & probabilities

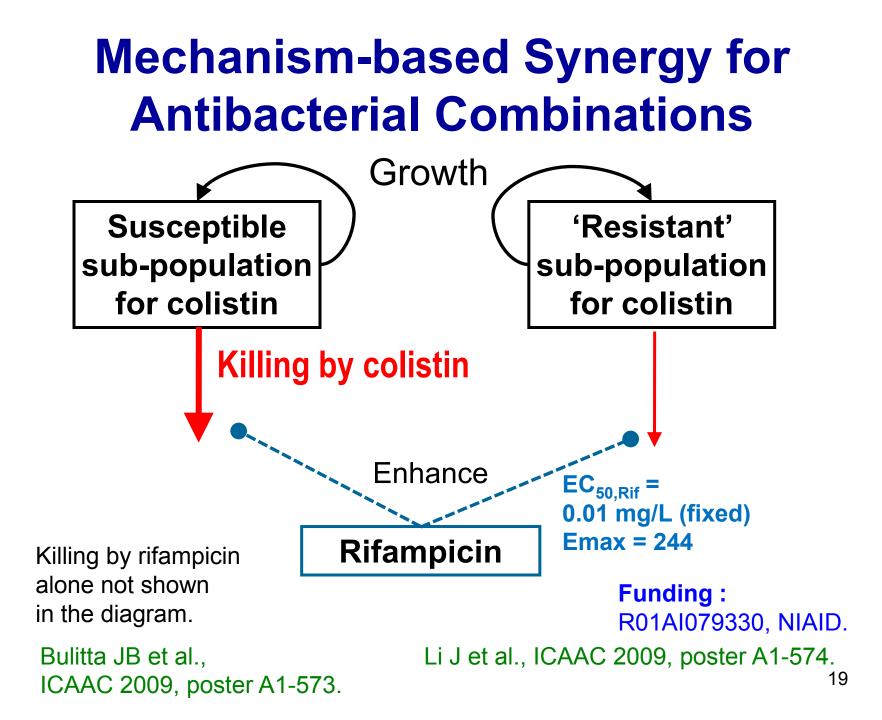

Authors' Copyright © 2010. All rights reserved.

Sub-population synergy

Drug A kills the resistant sub-population of drug B & vice versa.

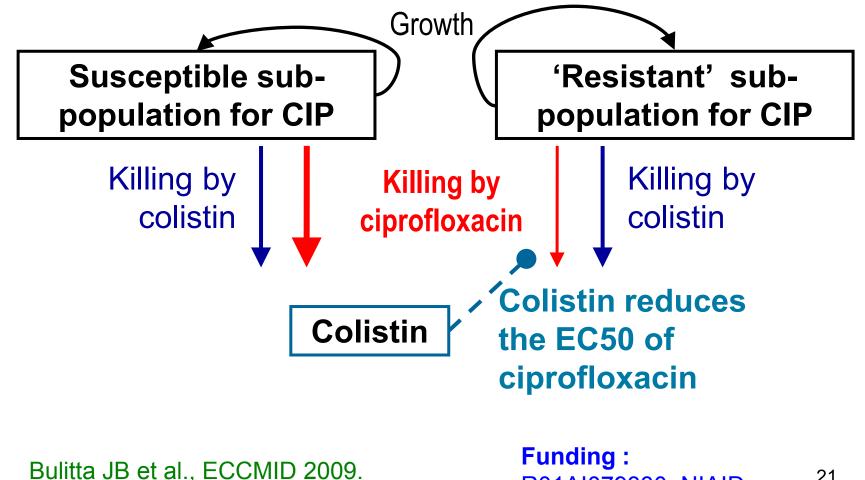

Susceptible to A

Susceptible to B

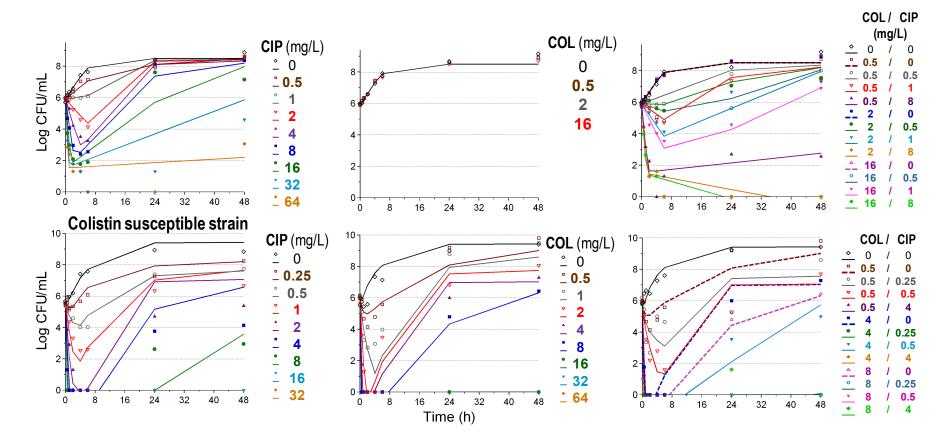


Example of sub-population synergy: Imipenem & colistin vs. *P. aeruginosa* Bergen PJ et al., ICAAC 2009, poster A1-575.


Colistin and imipenem alone & in combination against *Pseudomonas aeruginosa* at two initial inocula


Bergen PJ et al., ICAAC 2009, poster A1-575. Funding : R01Al079330, NIAID.

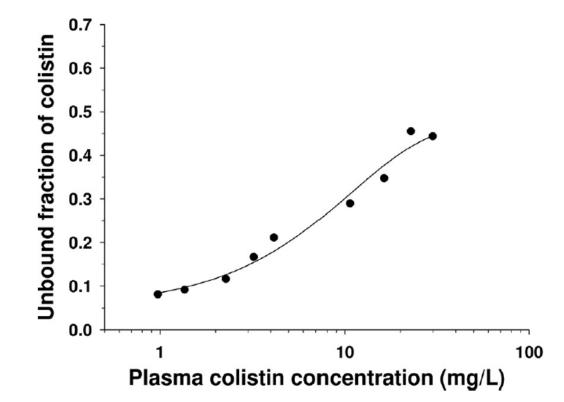
Rifampicin Enhances Rate of Killing by ColistinAcinetobacter baumannii- time-kill studies


Mechanistic synergy: Colistin increases the effective intracellular concentration of ciproflox. potentially via interference with efflux transporters

21

R01AI079330, NIAID.

Curve Fits: Colistin + ciprofloxacin vs. *P. aeruginosa*



Bulitta JB et al., ECCMID 2009.

Funding : 22 R01AI079330, NIAID.

Transition to man

In vivo protein binding – a truly exciting story for colistin

Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124 FIG. 1. f_u of colistin against the end-dialysis plasma concentration of colistin in the equilibrium dialysis study. The solid line is a fourparameter model fit obtained by nonlinear least-squares regression $(R^2 = 98\%)$ of the experimental data: $f_u = -3.45 + 3.91/(1 + \exp\{-[x - (-21.41)]\}/10.09)$, where x is the plasma colistin concentration.

PK of colistin (base) in mice

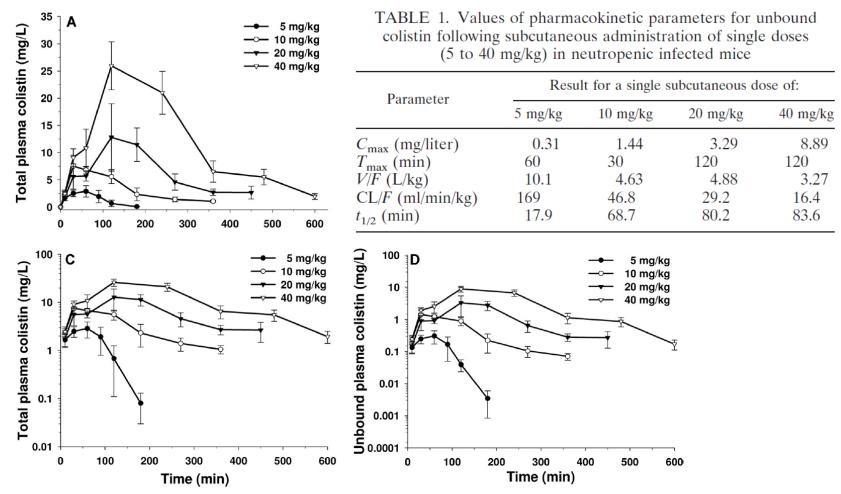
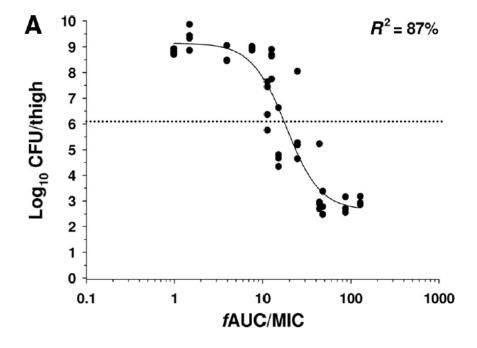
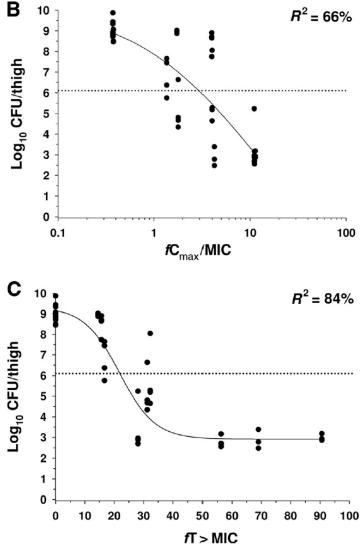




FIG. 2. Total (A) and unbound (B) plasma colistin concentrations versus time after administration of single subcutaneous doses of 5, 10, 20, or 40 mg/kg colistin (sulfate) in neutropenic infected mice. (C and D) Corresponding data on semilogarithmic coordinates. Each symbol represents the mean \pm standard deviation for four mice.

Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124

PK/PD indices in neutropenic animals

Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124

FIG. 3. Relationships for *P. aeruginosa* ATCC 27853 between the \log_{10} CFU per thigh at 24 h and the PK/PD indices *f*AUC/MIC (A), *f*C_{max}/MIC (B), and *fT* > MIC (C). Each symbol represents the datum from a single thigh. The dotted lines represent the mean bacterial burden in the thighs at the start of treatment.

PK/PD parameter estimates in mice

TABLE 2. PK/PD model parameter estimates predicting viable counts at 24 h for the *f*AUC/MIC index for colistin against all three strains of *P. aeruginosa* in the thigh and lung infection models

Model and strain	E_{\max} (log ₁₀ CFU/organ)	$\begin{array}{c} E_0 \left(\log_{10} \right. \\ \text{CFU/organ} \right) \end{array}$	EC ₅₀	γ
Thigh infection ATCC 27853 PAO1 19056 ^b	6.29 (8.2) ^{<i>a</i>} 5.97 (6.1) 6.23 (10.1)	8.97 (2.9) 8.34 (1.9) 7.98 (3.0)	18.8 (11.8) 22.7 (12.6) 19.5 (20.4)	2.36 (23.1) 1.51 (16.2) 1.13 (24.0)
Lung infection ATCC 27853 PAO1 19056 ^b	7.58 (16.1) 7.36 (26.1) 6.86 (12.7)	9.34 (3.4) 8.97 (3.4) 8.85 (2.9)	16.8 (48.8) 31.7 (87.9) 12.4 (40.0)	0.61 (20.2) 0.54 (30.0) 0.54 (18.4)

^a Data in parentheses are the percent relative standard error.

^b Multidrug-resistant mucoid strain.

Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124

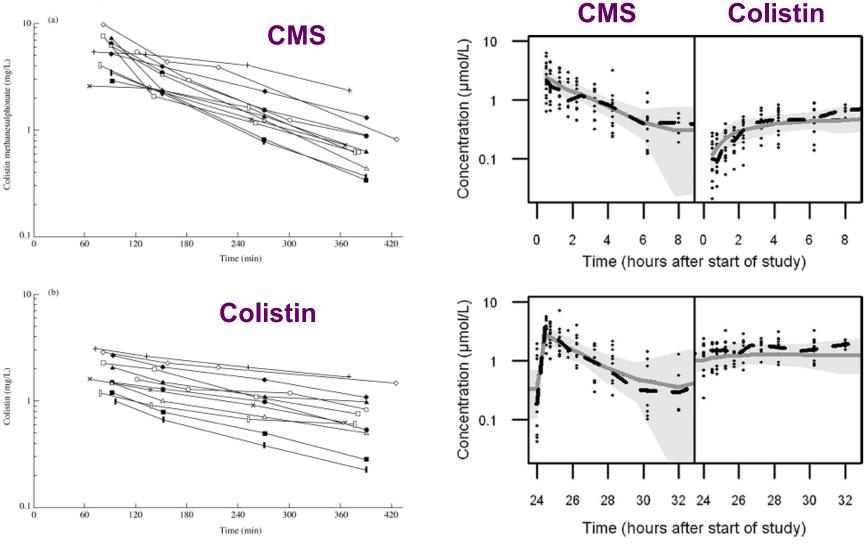
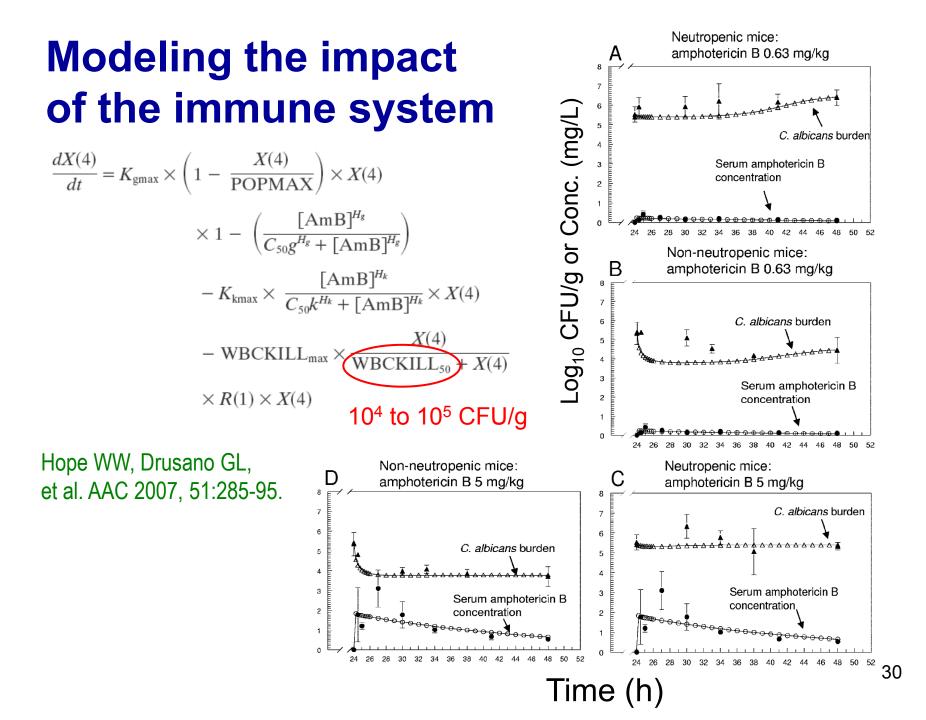

PK/PD index value for certain killing endpoints

TABLE 3. Target values of colistin *f*AUC/MIC for stasis and 1-, 2-, and 3-log₁₀ kill against all three *P. aeruginosa* strains in the thigh and lung infection models

Model and kill	Target value of colistin fAUC/MIC for strain:				
effect	ATCC 27853	PAO1	19056		
Thigh infection					
Static effect	17.3	14.4	8.34		
1-log ₁₀ kill	22.7	22.8	15.6		
$2 - \log_{10} \text{ kill}$	31.2	36.1	27.6		
$3-\log_{10}$ kill	55.1	66.7	53.3		
Lung infection					
Static effect	6.43	5.42	4.07		
1-log ₁₀ kill	15.6	16.7	12.2		
$2 - \log_{10} \text{ kill}$	37.9	45.9	36.9		
$3-\log_{10}$ kill	105	135	141		


Dudhani RV. et al. Antimicrob Agents Chemother 2010; 54: 1117-1124

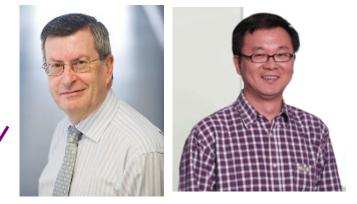
Population PK of colistin in CF-patients and in Cystic Fibrosis and Critically ILL patients

Li J et al. JAC 2003; 52: 987-92.

Plachouras D. et al. AAC 2009; 53: 3430-6. 29



Conclusions


- 1. Colistin is a very promising component of our armamentarium against MDR gram-negatives.
- 2. The rapid killing and rapid emergence of resistance to colistin *in vitro* suggests administering a large initial dose of colistin and a short duration of therapy.
- 3. PK in special patient groups needs to be considered.
- 4. Synergy in cell kill and prevention of resistance of colistin with a variety of compounds *in vitro* warrants studies *in vivo* and in the hollow fiber system.
- 5. Rational development of combination regimens with colistin supported by mathematical modeling holds great promise.

A Global Team Approach

Team of Alan Forrest, Brian T. Tsuji (Buffalo, NY, USA) and Jurgen Bulitta (Albany, NY)

Roger Nation's and Jian Li's Team in Melbourne, Australia

And a series of other collaborators, including our colleagues (David Z D'Argenio & Robert J Bauer, et al.) writing the mathematical software tools. **Funding:** Colistin work supported by R01AI079330 from NIAID, NIH.